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abstract
In a social network, nodes correspond to people or other 
social entities, and edges correspond to social links between 
them. In an effort to preserve privacy, the practice of anony-
mization replaces names with meaningless unique identi-
fiers. We describe a family of attacks such that even from 
a single anonymized copy of a social network, it is possible 
for an adversary to learn whether edges exist or not between 
specific targeted pairs of nodes.

1. IntRoduCtIon

1.1. anonymized social networks
Digital traces of human social interactions can now be found 
in a wide variety of online settings, and this has made them 
rich sources of data for large-scale studies of social networks. 
While a number of these online data sources are based on 
publicly crawlable blogging and social networking sites, 
where users have explicitly chosen to publish their links to 
others, many of the most promising opportunities for the 
study of social networks are emerging from data on domains 
where users have strong expectations of privacy—these 
include email, phone, and messaging networks, as well as 
the link structure of closed (i.e., “members-only”) online 
communities. As a useful working example, consider a “com-
munication graph,” in which nodes are email addresses, and 
there is a directed edge (u, v) if u has sent at least a certain 
number of email messages or instant messages to v, or if v 
is included in u’s address book. Here, we will be considering 
the “purest” form of social network data, in which there are 
simply nodes corresponding to individuals and edges indi-
cating social interaction, without any further annotation 
such as timestamps or textual data.

In designing studies of such systems, one needs to set 
up the data to protect the privacy of individual users while 
preserving the global network properties. This is typically 
done through anonymization, a simple procedure in which 
each individual’s “name”—for example, email address, 
phone number, or actual name—is replaced by a random 
user ID, but the connections between the (now anonymized) 
 people—encoding who spoke together on the phone, 
who corresponded with whom, or who instant-messaged 
whom—are revealed. The motivation behind anonymizing 

is roughly as follows: while the social network labeled with 
actual names is sensitive and cannot be released, there 
may be considerable value in allowing researchers to study 
its structure. For such studies, researchers are not specifi-
cally interested in “who” corresponds to each node, but in 
the properties of the graph, such as its connectivity, node-
to-node distances, frequencies of small subgraphs, or the 
extent to which it can be clustered. Anonymization is thus 
intended to exactly p reserve the pure unannotated structure 
of the graph while suppressing the “who” information.

Can this work? The hope is that being handed an ano-
nymized picture of a social network—just a graph with a 
 random identifier attached to each node—is roughly akin 
to being given the complete social network of Mars, with 
the true Martian names attached to the nodes. Intuitively, 
the names are meaningless to earth-dwellers: we do not 
“know” the Martians, and it is completely irrelevant to us 
whether a given node in the graph is labeled “Groark” or 
“Zoark.” The difficulty with this metaphor, of course, is 
that anonymous social network data almost never exists in 
the absence of  outside context, and an adversary can poten-
tially combine this knowledge with the observed structure 
to begin compromising privacy, de-anonymizing nodes, and 
even learning the edge relations between explicitly named 
(de-anonymized) individuals in the system. Moreover, such 
an adversary may in fact be a user (or set of users) of the sys-
tem that is being anonymized.

For distinguishing among ways in which an adversary 
might take advantage of context, it is useful to consider 
an analogy to the distinction between passive attacks and 
active attacks in cryptanalysis—that is, between attacks 
in which an adversary simply observes data as it is pre-
sented, and those in which the adversary actively tries to 
affect the data to make it easier to decipher. In the case of 
anonymized social networks, passive attacks are carried 
out by individuals who try to learn the identities of nodes 
only after the anonymized network has been released. 
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In contrast, an adversary in an active attack tries to com-
promise privacy by strategically  creating new user accounts 
and links before the anonymized network is released so 
that these new nodes and edges will then be present in the 
anonymized network.

1.2. the present work: attacks on anonymized  
social networks
In this paper, we present both active and passive attacks on 
anonymized social networks, showing that both types of 
attacks can be used to reveal the true identities of  targeted 
users, even from just a single anonymized copy of the 
 network, and with a surprisingly small investment of effort 
by the attacker.

We describe active attacks in which an adversary chooses 
an arbitrary set of users whose privacy it wishes to violate, 
creates a small number of new user accounts with edges to 
these targeted users, and creates a pattern of links among 
the new accounts with the goal of making it stand out in the 
anonymized graph structure. The adversary then efficiently 
finds these new accounts together with the targeted users 
in the anonymized network that is released. At a theoretical  
level, the creation of  nodes by the attacker in an 
n-node network can begin compromising the privacy of arbi-
trary targeted nodes, with high probability for any network; 
in experiments, we find that on a 4.4-million-node social 
network, the creation of 7 nodes by an attacker (with degrees 
comparable to those of typical nodes in the network) can 
compromise the privacy of roughly 2400 edge relations on 
average. Moreover, experimental evidence suggests that it 
may be very difficult to determine whether a social network 
has been compromised by such an active attack.

We also consider passive attacks, in which users of the 
system do not create any new nodes or edges—they simply 
try to find themselves in the released network and from this 
to discover the existence of edges among users to whom 
they are linked. In the same 4.4-million-node social network 
dataset, we find that for the vast majority of users, it is possi-
ble for them to exchange structural information with a small 
coalition of their friends and subsequently uniquely iden-
tify the subgraph on this coalition in the ambient network. 
Using this, the coalition can then compromise the privacy of 
edges among pairs of neighboring nodes.

There are some obvious trade-offs between the active and 
passive attacks. The active attacks have more potent effects, 
in that they are guaranteed to work with high probability in 
any network (they do not force users to rely on the chance 
that they can uniquely find themselves after the network is 
released), and the attacker can choose any users it wants to 
target. On the other hand, while the passive attack can only 
compromise the privacy of users linked to the attacker, it 
has the striking feature that this attacker can simply be a 
user of the system who indulges his or her curiosity; there 
is no observable “wrongdoing” to be detected. Moreover, 
since we find in practice that the passive attack will succeed 
for the majority of the population, it says in effect that most 
people in a large social network have laid the groundwork 
for a privacy-breaching attack simply through their every-
day actions, without even realizing it.

These trade-offs naturally suggest the design of hybrid 
“semi-passive” attacks, in which a user of the system creates 
no new accounts but simply creates a few additional out-
links to targeted users before the anonymized network is 
released. As we show later, this can lead to privacy breaches 
on a scale approaching that of the active attack, without 
requiring the creation of new nodes.

In the next section, we provide some background and con-
text for our work in terms of the broader area of data privacy. 
We then present our two main classes of active attacks on 
anonymized social networks; we refer to them as walk-based 
attacks and cut-based attacks, with the names reflecting the 
underlying techniques being used. We then describe the use 
of passive attacks and conclude with a general discussion.

2. ReLated WoRK
This work fits within a growing literature that has considered 
ways in which private online data can be divulged against 
users’ wishes, via carefully devised privacy-breaching attacks. 
Such attacks have been based on a variety of features in the 
data; for example, the queries entered by users into search 
engines can be used to uniquely identify them,17 and the 
writing styles of users in online discussion can likewise be 
used to find the same person writing under different pseud-
onyms.22 Temporal data can also be an effective feature in 
privacy-breaching attacks: since it is unlikely for two users to 
perform a nontrivial set of actions at almost exactly the same 
sets of times, the sequence of times at which a user performs 
these actions becomes a type of identifying signature.20

We note that in our case, both the passive and active 
attackers do not have access to highly resolved data like 
timestamps or other textual or numerical attributes; they 
can only use the binary information about who links to 
whom, without other node attributes, and this makes their 
task more challenging. Indeed, the secret subgraph H con-
structed as part of our attacks can be thought of as a kind 
of structural steganography, hiding secret messages for later 
recovery using just the social structure of G.

In this way, our approach can be seen as a step toward 
understanding how fundamental techniques of data privacy 
(see, e.g., Dwork9 and the references therein) can inform 
how we think about the protection of even the most skele-
tal social network data. We discuss this further in the final 
section.

In the time since the conference proceedings version 
of our work appeared, there has been continued research 
exploring mechanisms by which private data can be 
revealed online. Concurrent with our work, Hay et al.15 
considered a set of methods for identifying nodes in ano-
nymized social networks by looking at successively larger 
neighborhoods of a node. More recently, Narayanan and 
Shmatikov21 have shown how access to multiple networks 
containing overlapping sets of people can enable approaches 
to de-anonymization based on approximately aligning the 
portions of the networks that overlap.

In a related but different direction, several lines of recent 
work have shown how the principle of homophily—that 
neighbors in social networks have similar characteristics—
can be used to discover private information: even if a user 
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keeps profile information private, it can often be estimated 
from attributes in public profiles maintained by his or her 
friends.16, 19, 25 Finally, recent work shows how social links 
themselves can be discovered from information about the 
times and places at which individuals perform activities; 
using data from a photo-sharing site, Crandall et al.6 showed 
that if two users uploaded photos from approximately the 
same location at approximately the same time on multiple 
occasions, there was a sharply increased probability that 
they were linked on the site’s social network.

3. tHe WaLK-BaSed attaCK
To set the stage for our first active attack, we begin with 
some definitions and notation. We assume the social net-
work is an n-node graph G = (V, E), representing interactions 
in an online system. Nodes correspond to user accounts 
and an edge (u, v) indicates that u has communicated with 
v (again, consider the example of an email or instant mes-
saging  network). The attacks become easier to carry out if 
the released graph data is directed; for most of the paper, we 
will therefore consider the harder case of undirected graphs, 
in which we assume that the curator of the data—the agent 
that releases the anonymized network—eliminates the 
directions on the edges.

3.1. description of the attack
Let us consider the problem from the perspective of the 
attacker. For ease of presentation, we begin with a slightly 
simplified version of the attack and then show how to extend 
it to the attack we really use. Recall that as an attacker, our 
basic approach is to create a set of new user accounts with 
links among them that will “stand out” when the ano-
nymized graph is released. Thus, we first choose a set of  
k = Q (log n) named users, W = {w1, . . ., wk}, that we wish to 
target in the network—we want to learn all the pairs (wi, wj) 
for which there are edges in G. We create a set of k new user 
accounts, X = {x1, . . ., xk}, which will appear as nodes in the 
system. We include each undirected edge (xi, xj) indepen-
dently with probability 1/2. This produces a random graph 
H on X.

We also create an edge (xi, wi) for each i. (In terms of 
the underlying social network, this involves having xi send 
wi a message, or include wi in an address book, or some 
other activity depending on the nature of the network.) For 
describing the basic version of the attack, we also assume 
that, because the account xi corresponds to a fake identity, it 
will not receive messages from any node in G – H other than 
potentially wi, and thus will have no link to any other node in 
G – H. We will see later that the attack can be made to work 
even when this latter assumption does not hold.

When the anonymized graph G is released, we need to find 
our copy of H, and to correctly label its nodes as x1, . . ., xk. 
Having found these nodes, we then find wi as the unique 
node in G – H that is linked to xi. We thus identify the full 
labeled set W in G, and we can simply read off the edges 
between its elements by consulting G.

It is worth noting that this type of attack only involves 
the use of completely innocuous operations in the context 
of the system being compromised—the creation of new 

accounts and the creation of links to existing accounts. In 
this sense, while the active attacker’s aims are nefarious 
(and, in almost any imaginable scenario, prohibited either 
by research ethics guidelines or the terms of service of the 
system, or both), none of the individual steps from which 
the attack is constructed could be viewed at a syntactic 
level as “breaking into” parts of the system where it is not 
allowed.

A number of technical ingredients are needed in order to 
make this attack work based on whether certain subgraphs 
have the same structure as each other and whether they have 
any internal symmetries. To express such questions, we use 
the following terminology. For a set of nodes S, we let G[S] 
denote the subgraph of G induced by the nodes in S. An iso-
morphism between two sets of nodes S and S¢ in G is a one-to-
one correspondence f: S ® S¢ that maps edges to edges and 
non-edges to non-edges: (u, v) is an edge of G[S] if and only 
if (  f (u), f (v) ) is an edge of G[S¢]. In this case, G[S] and G[S¢] 
are isomorphic—they are the same graph up to relabeling. 
An automorphism is an isomorphism from a set S to itself—
a relabeling of the nodes f: S ® S that preserves graph’s 
structure. An automorphism f is nontrivial if it is not the 
identity function.

Thus, the construction of H succeeds if

  (i)  There is no S ¹ X such that G[S] and G[X] = H are 
isomorphic.

  (ii)  The subgraph H can be efficiently found, given G.
(iii)  The subgraph H has no nontrivial automorphisms

If (i) holds, then any copy of H we find in G must in fact be 
the one we constructed; if (ii) holds, then we can in fact find 
the copy of H quickly; and if (iii) holds, then once we find H, 
we can correctly label its nodes as x1, . . ., xk, and hence find 
w1, . . ., wk.

The full construction is almost as described above, with 
the following three additions. First, the size of the targeted 
set W can be larger than k. The idea is that rather than con-
necting each wi with just a single xi, we can connect it to a 
subset Ni ⊆ X, as long as wi is the only node in G – H that is 
attached to precisely the nodes in Ni—this way wi will still be 
uniquely identifiable once H is found. Second, we will explic-
itly randomize the number of links from each xi to G – H, to 
help in finding H. And third, to recover H, it is helpful to 
be able to traverse its nodes in order x1, x2, . . ., xk. Thus, we 
deterministically include all edges of the form (xi, xi + 1) and 
 randomly construct all other edges.
The Construction of H. With this informal discussion in 
mind, we now give the full specification of the attack.

(1)  We choose k = (2 + d ) log2 n, for a small constant d 
> 0, to be the size of X. We choose two constants 
d0 ≤ d1 = O(log n), and for each i = 1, 2, . . ., k, we 
choose an external degree Di ∈ [d0, d1] specifying 
the number of edges xi will have to nodes in G – H. 
Each Di can be chosen arbitrarily, but in our experi-
ments with the algorithm, it works well simply to 
choose each Di independently and uniformly at 
 random from the interval [d0, d1].

(2)  Let W = {w1, w2, . . ., wb} be the users we wish to target, 
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for a value b = O(log2 n). We also choose a small integer 
constant c (c = 3 will suffice in what follows). For each 
targeted node wj, we choose a set Nj ⊆ {x1, . . ., xk} such 
that all Nj are distinct, each Nj has size at most c, and 
each xi appears in at most Di of the sets Nj. (This gives 
the true constraint on how large b = O(log2 n) can be.) 
We construct links to wj from each xi ∈ Nj.

(3)  Before generating the random internal edges of H, we 
add arbitrary further edges from H to G – H so that each 
node xi has exactly Di edges to G – H. We construct 
these edges subject only to the following condition: 
for each j = 1, 2, . . ., b, there should be no node in G – H 
other than wj that is connected to precisely the nodes 
in Nj.

(4)  Finally, we generate the edges inside H. We include 
each edge (xi, xi+1), for i = 1, . . ., k − 1, and we include 
each other edge (xi, xj) independently with probability 
1/2. Let  be the degree of xi in the full graph G (this is 
Di plus its number of edges to other nodes in X).

This concludes the construction. As a first fact, we note 
that standard results in random graph theory (see, e.g., 
Bollobás5) imply that with high probability, the graph H 
has no nontrivial automorphisms. We will assume hence-
forth that this event occurs, that is, that H has no nontrivial 
automorphisms.

We also note that the attack will work even if multiple 
copies of the construction are carried out simultaneously. 
That is, we can choose different sets of nodes to attack, W1, 
W2, . . ., Wt, each of size Q (log n); for each Wi, we add a distinct 
set of new nodes Xi to the graph G, building a graph Hi on 
each Xi with the different random constructions performed 
independently.
efficiently recovering H Given G. When the graph G is 
released, we want to identify H: that is, we want to find the 
subset of nodes of G that correspond to the set of nodes 
x1, x2, . . ., xk of H. Since we have constructed H to contain a 
path through the nodes x1, x2, . . ., xk, we will search along 
k-node paths in G, looking for a k-node path P for which 
the edges induced among the nodes of P have precisely the 
structure of H.

At a high level (ignoring issues of efficiency, which we dis-
cuss next), our algorithm works simply as follows. For every 
k-node path P = {y1, y2, . . ., yk} in G, we visit the nodes of P in 
order, declaring P to have failed in the comparison to H as soon 
as we reach a node yi that fails one of the following two tests.

  (i)  a degree test: The degree of node yi should be equal to 
the value , which we know to be the degree of node 
xi in G.

(ii)  an internal structure test: For each j < i, there should be 
an edge (yj, yi) in G if and only if (xj, xi) is an edge of H.

Finally, if we reach the end of the path P without any of its 
nodes having failed either of these tests, then by definition 
we have found a copy of H in G. (As we note later, the degree 
test is not necessary either for the correctness of the algo-
rithm or the bound on the worst-case running time, but it is 
extremely useful in practice.)

There will typically be an extremely large number of 
 distinct k-node paths in G, so we need to organize the 
computation carefully in order for the search algorithm to 
run efficiently. We do this as follows:

• First, we loop over all nodes v of G, trying each as the 
candidate starting point y1 for the path P (the node that 
will correspond to x1 in H). If the degree of v is not equal 
to , then we skip v in this process, since it cannot cor-
respond to the node x1 in H.

• For each node v of degree , in G, we will organize all 
paths originating at y1 = v into a search tree τv in the natu-
ral way: each node a in τv, at depth l, will correspond to 
an l-node path in G, starting at y1 = v, that has not yet failed 
any of the degree or internal structure tests.

• We grow τv one level at a time. For each node a of τv, 
at depth l, corresponding to an l-node path P = {v = y1, 
y2, . . ., yl} in G, we first check whether yl  passes the degree 
and internal structure tests. If it does not, we declare a 
to be a leaf of τv. If it does pass, then we create a new 
child a ¢ of a in τv for each way of extending P by adjoin-
ing a neighbor of yl that does not already appear on P.

If τv ever acquires a node at depth k, then this corresponds to 
a k-node path in G that has passed all of our tests, and hence is 
a copy of H. Conversely, if there is such a path P originating at 
v, then our tree-growing procedure will continue adding nodes 
to τv until it produces a node at depth k corresponding to P.

Note that the total running time of this algorithm is only 
a small factor larger than the total number of nodes in all 
search trees τv (summed over all nodes v in G), and so a key 
issue in the analysis is to show that with high probability, the 
total number of nodes in all τv is not too large.

3.2. analysis
To prove the correctness and efficiency of the attack, we 
show two things: with high probability, the construction 
produces a unique copy of H in G, and with high probability, 
the total number of nodes in all search trees τv in the recovery 
algorithm does not grow too large.

The formal statements of these two claims are as follows.

• Uniqueness. Let k ≥ (2 + d )log2 n for an arbitrary positive 
constant d > 0, and suppose we use the following process to 
construct an n-node graph G:

  (i)  We start with an arbitrary graph G¢ on n – k nodes, and 
we attach new nodes X = {x1, . . ., xk} arbitrarily to 
nodes in G¢.

 (ii)  We build a random subgraph H on X by including each 
edge (xi, xi+1 ) for i = 1, . . ., k − 1, and including each 
other edge (xi, xj) independently with probability 1/2.

Then with high probability, there is no subset of nodes 
S π X in G such that G[S] is isomorphic to H = G[X].

• efficiency. For every e > 0, with high probability, the total 
number of nodes appearing in all the search trees τv (over 
all v in G) is O(n1+e).
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While the proofs of these claims are somewhat involved, 
the basic idea underlying them is rooted in an argument for-
mulated by Paul Erdös to prove a result in Ramsey Theory.5, 11 
In the simplest form of the argument, let us suppose we have 
an n-node graph G and a random k-node graph H on nodes 
{xi, x2, . . ., xk}, with each edge (xi, xj) present independently 
with probability 1/2. What is the probability that G contains 
a k-node subgraph that is isomorphic to H? For any k-tuple 
of nodes v1, v2, . . ., vk in G, the probability that the subgraph 
of G on this k-tuple is isomorphic to H, under the mapping 
sending vi to xi, is precisely , since the presence or 
absence of the random edge (xi, xj) has to match the presence 
or absence of (vi, vj) for each (i, j ) pair. But there are fewer 
than nk such k-tuples of nodes in G, and so the probability 
that any of them yields such an isomorphism is less than 
nk 2−k(k−1)/2. Now a direct calculation shows that once k exceeds 
2 1og2 n, this probability shrinks rapidly to 0, and hence it is 
likely that there is no isomorphic copy of H in G.

This gives the central idea of the proofs, but the details 
become more complicated because the graph H in the 
active attack is necessarily being attached by edges to the 
graph G—and this creates the possibility of isomorphisms 
that  create a second copy of H out of parts of the original 
H together with parts of the rest of G. Showing that this is 
unlikely to happen requires a more intricate argument.

It is important to stress, however, that the intricacy of 
the proofs is an aspect of the analysis, not of the algorithms 
themselves. The construction of H and the recovery algo-
rithm have already been fully specified in the previous sub-
section, and they are quite simple to implement.

We conclude with some comments on the tests used in 
the recovery algorithm. Recall that as we build τv, we elimi-
nate paths based on an internal structure check (do the edges 
among path nodes match those in H?) and a degree check 
(do the nodes on the path have the same degree sequence 
as H?). The proofs of our two main claims require just the 
internal structure check to prove uniqueness and to bound 
the size of τv, respectively, but it is important in practice 
that the algorithm use both checks: as the experiments in 
the next subsection will show, one can get unique subgraphs 
at smaller values of k, and with much smaller search trees 
τv, by including the degree tests. But it is interesting to note 
that since these theorems can be proved using only inter-
nal structure tests, the attack is robust at a theoretical level 
provided only that the attacker has control over the internal 
structure of X, even in scenarios where nodes elsewhere in 
the graph may link to nodes in X without the knowledge of 
the attacker. (In this case, we still require that the targeted 
nodes wj Î W are uniquely identifiable via the sets Nj and that 
all degrees in X remain logarithmic.)

3.3. Computational experiments
social Network data. We now describe computational 
experiments with the algorithm on real social network 
data drawn from an online setting. We find that the algo-
rithm scales easily to several million nodes and produces 
efficiently findable unique subgraphs for values of k sig-
nificantly smaller than the upper bounds in the previous 
subsections.

As data, we use the network of friendship links on the 
blogging site LiveJournal, constructed from a crawl of this 
site performed in February 2006. Each node in LiveJournal 
corresponds to a user who has made his or her blog public 
through the site; each user can also declare friendship links 
to other users. These links provide the edges of the social 
network we construct; they are directed, but we follow the 
principle of the previous subsections and convert them to 
undirected edges for purposes of the experiments. The 
LiveJournal data thus works well as a testbed; it has 4.4 mil-
lion nodes and 77 million edges in the giant component of 
its undirected social network, and it exhibits many of the 
global structural features of other large online social net-
works. Finally, we emphasize that while LiveJournal has the 
right structure for our tests, it is not in reality an anonymous 
network—all the nodes in the network represent users who 
have chosen to publish their information on the Web.

We simulate anonymization by removing all the user 
names from the nodes; we then run our attack and investi-
gate the ranges of parameters in which it successfully iden-
tifies targeted nodes. As a first question, we examine how 
often H can be found uniquely for specific choices of d0, d1, 
and k. In our construction, we generate a random external 
degree Di for each node xi uniformly from [d0, d1]. We then 
create links to targeted nodes sequentially. Specifically, 
in iteration i we choose a new user wi in G – H to target; we 
then pick a minimal subset X¢ ⊆ X that has not been used 
for any wj for j < i, and where the degrees of nodes in X¢ are 
less than their randomly selected target degrees. We add 
an edge between wi and each user in X¢. We repeat this 
process until no such X¢ can be found. If, at the end of the 
process, some nodes in X have not yet reached their target 
degrees, we add edges to random nodes in G (and remove 
nodes from W so that no two nodes are connected to the 
same subset of X).
Uniqueness. We say the construction succeeds if H can be 
recovered uniquely. Figure 1 shows the success frequency 
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figure 1. for two different choices of d0 and d1, the value k = 7 gives 
the attack on the Live Journal graph a high probability of success. 
Both of these choices for d0 and d1 fall well within the degrees 
typically found in G.
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for two different choices of d0 and d1 (the intervals [10, 20] 
and [20, 60]), and varying values of k. We see that the success 
frequency is not significantly different for our two choices. 
In both cases the number of nodes we need to add to achieve 
a high success rate is very small—only 7. With 7 nodes, we 
can attack an average of 34 and 70 nodes for the smaller and 
larger degree choices, respectively.

We also note that the degree tests are essential for pro-
ducing unique identifiability of H at such a small value of k. 
In fact, each of the 734 possible Hamiltonian graphs on  
7 nodes actually occurs in the LiveJournal social network, so 
it is only because of its degree sequence in G that our con-
structed subgraph H is unique. (Our Uniqueness result does 
guarantee that a large enough H will be unique purely based 
on its internal structure; this is compatible with our findings 
since the analyzed bound of (2 + d) log2 n is larger than the 
value k = 7 with which we are succeeding in the experiments.)
efficient recovery. In addition to being able to find H reli-
ably, we must be able to find H quickly. We argued above 
that the total number of nodes in all search trees τv would 
be  sufficiently small that our search algorithm would be 
near-linear. In our experiments on the LiveJournal friend-
ship graph, we find that, in practice, the total number of 
nodes in all τv is not much larger than the number of nodes 
v whose degree in G is equal to . (Recall that we only build 
search trees for those v that have this degree.) For instance, 
when d0 = 10 and d1 = 20, there are an average of 70,000 nodes 
that have degree , while the total number of nodes in all 
search trees τv is typically about 90,000.
detectability. Our simple attack shows that simple anony-
mization does not preserve privacy of links. One might won-
der about the detectability of the attack: can the curator of 
the data, who is releasing the anonymized version, not be 
able to discover and remove H? The curator does not have 
access to the secret degree sequence or the edges within  
H and so cannot employ the same algorithm the attacker 
uses to discover H. However, if H were to stand out signifi-
cantly in some other way, there might be an alternate means 
for finding it.

This subtle issue is worthy of more rigorous treat-
ment; here, we provide the following indications that the 
subgraph H may be hard to discover. First is the simple 
fact that H has only 7 nodes, so it is difficult for any of its 
graph-theoretic properties to stand out with much statisti-
cal significance. Second, we describe some particular ways 
in which H does not stand out. To begin with, the internal 
structure of H is consistent with what is present in the net-
work. For example, we have already mentioned that every 
7-node Hamiltonian graph already occurs in LiveJournal, 
so this means that there are already subgraphs that exactly 
match the internal structure of H as an induced 7-node 
subgraph. (We are still able to find H because of the pat-
tern of edges that connect nodes of H to nodes of G – H.) 
More generally, almost all nodes in LiveJournal are part of 
a very dense 7-node subgraph: If we look at all the nodes 
with degree at least 7, and consider the subgraph formed 
by those nodes and their 6 highest-degree neighbors, over 
90% of such subgraphs have at least 11 >  edges. These 
subgraphs are also almost all comparably well connected 

to the rest of G.

4. tHe Cut-BaSed attaCK
In the walk-based attack just presented, one needs to con-
struct a logarithmic number of nodes in order to begin com-
promising privacy. On the other hand, we can show that at  
least  nodes are needed in any active attack that 
requires a subgraph H to be uniquely identifiable with high 
probability, independent of both the structure of G – H and 
the choice of which users to target.

It is therefore natural to try closing this gap between the 
O(log n) number of nodes used by the first attack and the 

 lower bound required in any attack. With this in 
mind, we now describe our second active attack, the cut-
based attack; it matches the lower bound by compromising 
privacy using a subgraph H constructed on only  
nodes. While the bound for the cut-based attack is appeal-
ing from a theoretical perspective, there are several impor-
tant respects in which the walk-based attack that we saw 
earlier is likely to be more effective in practice. First, the 
walk-based attack comes with a much more efficient recov-
ery algorithm; and second, the walk-based attack appears 
to be harder for the curator of the data to detect (as the cut-
based attack produces a densely connected component 
attached weakly to the rest of the graph, which is uncom-
mon in many settings).
The Construction of H. We begin the description of 
the  cut-based attack with the construction of the sub-
graph H.

(1)  Let b, the number of users we wish to target, be 
, and let w1, w2, . . ., wb be these users. First, for 

k = 3b + 3, we construct a set X of k new user accounts, 
creating an (undirected) edge between each pair with 
probability 1/2. This defines a subgraph H that will 
be in G.

(2)  Let d (H) denote the minimum degree in H, and let 
γ (H) denote the value of the minimum cut in H (i.e., 
the minimum number of edges whose deletion dis-
connects H). It is known that for a random graph H 
such as we have constructed, the following properties 
hold with probability going to 1 exponentially quickly 
in k: first, that γ (H) = d (H); second, that d (H) ≥ (1/2 − e)
k for any constant e > 0; and third, that H has no non-
trivial automorphisms.5 In what follows, we will 
assume that all these properties hold: γ  (H) = d (H) ≥ 
k/3 > b, and H has no nontrivial automorphisms.

(3)  We choose b nodes x1, . . ., xb in H arbitrarily. We 
 create a link from xi to wi so that the edge (xi, wi) will 
appear in the anonymized graph G. Thus, b of the 
nodes of H each have a single edge to a node of G – H, 
while the other k − b nodes of H have no edges to 
nodes of G – H.

A crucial property of H that we will use is the following: 
there are b edges in total that have one end in H and the 
other end in G – H; on the other hand, each node in H has 
more than b edges to other nodes of H.

Finally, we note that as with the walk-based attack in the 
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previous section, we can also carry out multiple copies of 
the present construction simultaneously, if desired, so as to 
attack multiple sets of targeted users W1, W2, . . ., Wt.
efficiently recovering H Given G. Now, when G is released, 
we identify the subgraph H and the targeted users w1, . . ., wb 
using the following recovery algorithm.

(1)  We first compute the Gomory–Hu tree of G—this is an 
edge-weighted tree T on the node set V of G, such that 
for any v, w  ∈ V, the value of the minimum v − w cut in 
G is equal to the minimum edge weight on the 
v − w path in T.13

Computing T is the most expensive step of the 
recovery algorithm, computationally. The best run-
ning time known for constructing a Gomory–Hu tree 
in a graph with n nodes and m edges is O(mn) times 
a factor that is polynomial in log (m + n).3 This is a 
much larger worst-case bound than we have for the 
walk-based attack. On the other hand, computational 
experiments in Web graph analysis indicate that 
Gomory–Hu tree computations can in fact be made 
to scale to very large graphs in practice.12

(2)  We delete all edges of weight at most b from T, produc-
ing a forest T ¢. To find the set of nodes X we con-
structed, we iterate through all components of T ¢ of 
size exactly k—let them consist of node sets S1, S2, . . ., 
Sr—and for each such Si we test whether G[Si] is isomor-
phic to H. These isomorphism tests can be done effi-
ciently, even by brute force, since k! = o(n). By adapting 
our proof of Uniqueness from the walk-based attack, 
we can show a form of uniqueness for H here too:

   •  With high probability, there will be a single i such that 
G[Si] is isomorphic to H, and that Si is equal to our set 
X of new nodes.

(3)  Since H has no non-trivial automorphisms, from 
knowledge of Si we can identify the nodes x1, . . ., xb 
that we linked to the targeted users w1, . . ., wb, respec-
tively. Hence we can identify the targeted users as 
well, which was the goal.

some specific Numbers for the Cut-Based attack. It is use-
ful to supplement the asymptotic results for the cut-based 
attack with some specific numbers. If the network G has 
100 million nodes, then by creating 12 new user accounts 
we can succeed in identifying 3 chosen users in the system 
with probability at least 0.99. Creating 15 new user accounts 
leads to a microscopically small failure probability.

The calculation is as follows. We first generate 100 ran-
dom 12-node graphs H1, . . ., H100, and see if any of them lacks 
nontrivial automorphisms and has a minimum cut of size 
at least 4. If any of them does, we choose one as our 12-node 
subgraph H. Computational experiments show that a ran-
dom 12-node graph will have no nontrivial automorphism 
and g  (H) ≥ 4 with probability roughly 0.25. Thus, with prob-
ability well over 0.999, one of the 100 graphs Hi will have this 
pair of properties. Now, if we use the ith of these random 
graphs in the construction, for a fixed i, then, applying the 
notation from the description of the attack above, there are 
at most 8333333 possible components Sj of size 12 in the 

forest T ¢, one of which, say S*, is our subgraph H. The prob-
ability that there even exists an Sj ¹ S* that is isomorphic to H 
is bounded by 8333333 · 12! < 2−66 < 6 · 10−5. Hence the proba-
bility that any Hi will lead to non-uniqueness when attached 
to G is at most 0.006, and so in particular this holds for the Hi 
that we choose as H.

By way of comparison, the provable bounds for the 
walk-based attack require a number of new user accounts 
that is at least 2 log2 n, which is approximately 53 when n is
100 million. On the other hand, as we have seen in our com-
putational experiments, the walk-based attack appears to 
require fewer nodes in practice than the provable guaran-
tees suggest, suggesting that further empirical comparison 
of these two attacks would be an interesting open question.

5. PaSSIVe attaCKS
In a passive attack, regular users are able to discover their 
locations in G using their knowledge of the local structure 
of the network around them. While there are a number 
of different types of passive attacks that could be imple-
mented, here we imagine that a small coalition of passive 
attackers collude to discover their location. By doing so, 
they compromise the privacy of some of their neighbors: 
those connected to a unique subset of the coalition, and 
hence unambiguously recognizable once the coalition is 
found.

Here, we imagine that a coalition X of size k is initiated 
by one user who recruits k − 1 of his or her neighbors to join 
the coalition. (Other structures could lead to analogous 
attacks.) We assume that the users in the coalition know 
the edges among themselves—the internal structure of H = 
G[X], using the terminology from the active attacks. We 
also assume that they know the names of their neighbors 
outside X. This latter assumption is reasonable in many 
cases: for example, if G is an undirected graph built from 
messages sent and received, then each user in X knows its 
incident edges.

The attack itself is analogous to the walk-based attack, 
except that the structure of H arises organically from the 
behavior of individuals using the system. A user x1 selects 
k − 1 neighbors to form a coalition X = {x1, x2, . . ., xk}. The 
coalition knows which edges (xi, xj) are in G and also the 
neighbors of each xi in G – X. Once G is released, the coalition 
runs the search algorithm from the walk-based attack, with 
a minor modification due to the fact that H need not have a 
Hamiltonian path but instead has a single node connected 
to all others.

To help the passive attack succeed, we can incorpo-
rate a further optimization that was not explicitly used for 
the walk-based active experiments. For each nonempty 
set S ⊆ {1, 2, . . ., k}, let g (S) denote the number of nodes in 
G that have edges to all the element of {xi: i Î S} and none 
of the elements of {xi: i ∉ S}. (In some places, we will abuse 
the notation for g (·) as follows: if U is a set of nodes in X 
rather than a set of indices, we will use g (U) to denote the 
number of nodes in G that have edges to all elements of U 
and no elements of X − U.) Now, suppose we have a node a in a 
search tree τv, corresponding to a path y1, y2, . . ., yl in G. For 
each S ⊆ {1, 2, . . ., l}, it should be the case that exactly g (S) 
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nodes of G are connected to all members of {yi: i Î S} and 
none of {yi: i ∉ S}; otherwise, {y1, . . ., yl} cannot be the first 
l nodes of the copy of H in G.

Finally, once the coalition of users X finds itself, it can 
determine the identity of any user w ∉ X whose neighbor set 
S in X satisfies g(S) = 1. (In this case, w is uniquely identified 
by the identities of its neighbors in X.)

Since the structure of H is not randomly generated, 
there is no a priori reason to believe that it will be uniquely 
findable or that the above algorithm will run efficiently. 
Indeed, for pathological cases of G and H, the problem is 
NP-Hard. However, we find on real social network data that 
the instances are not pathological and that subgraphs on 
small coalitions tend to be unique and efficiently findable.

The primary disadvantage of this attack in practice, as 
compared to the active attack, is that it does not allow one to 
compromise the privacy of arbitrary users. However, a natural 
extension is a semi-passive attack whereby a coalition of existing 
users colludes to attack specific users. To do this, the coalition 
X forms as described above with x1 recruiting k − 1 neighbors. 
Next, the coalition compares neighbor sets to find some set 
S ⊆ X such that g (S) = 0. Then, to attack a specific user w, each 
user in {xi: i Î S} adds an edge to w. Then, assuming that the 
coalition can uniquely find H, they will certainly find w as well.
Computational experiments. Here, we consider the passive 
attack on the undirected version of the LiveJournal graph. 
For varying k, we consider a coalition of a user x1 and his or 
her k − 1 highest-degree neighbors. (We also consider the 
case where x1 selects k − 1 neighbors at random; the success 
rate here is similar.) We analyze the attack described above 
for a randomly chosen sample of users x1 whose degree is at 
least k − 1.

We find that even coalitions as small as three or four users 
can often find themselves uniquely, particularly when using 
the refined version of the algorithm. Figure 2 summarizes the 
success rates for different-sized coalitions based on both 
the “simple” algorithm using the internal structure of H 
and the degree sequence, as well as the “refined” algorithm 
that incorporates the function g (S). With minimal prepro-
cessing, G can be searched for a particular coalition almost 
immediately: On a standard desktop, it takes less than a 
tenth of a second, on average, to find a coalition of size 6.

At first glance, these results seem at odds with the 
results for the active attack in Figure 1, as the passive attack 
is producing a higher chance of success with fewer nodes. 
However, in the active attack, we limited the degrees of the 
users created so that H would be inconspicuous. In the pas-
sive attack, there is no such limit, and many users’ highest-
degree neighbor has degree well over the limit of 60 that we 
imposed on the active attack; this makes it easier to find 
the resulting subgraph H. When we consider only those 
coalitions whose members all have degrees analogous 
to those in the active attack, the results are similar to the 
active attack.

As Figure 3 shows, the passive attack identifies relatively 
few nodes outside the coalition, compared to the active 
attack. However, with a semi-passive attack, we can greatly 
increase the number of users compromised, as indicated by 
Figure 3 (and recall that these users can be chosen arbitrarily 

by the coalition). Moreover, when the coalition is compro-
mising as many users as possible, the semi-passive attack 
tends to have a higher success rate.

6. dISCuSSIon
It is natural to ask what conclusions about private analysis 
of social network data should be drawn from this work. As 
noted at the outset, our work is not directly relevant to all 
settings in which social network data is used. For example, 
much of the research into online social networks is con-
ducted on data collected from Web crawls, where users 
have chosen to make their network links public. There 
are also natural scenarios in which individuals work with 
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social network data under safeguards that are primarily 
legal or contractual, rather than computational, in nature—
although even in such cases, there are compelling reasons 
why researchers covered by contractual relationships with a 
curator of sensitive data should still only publicly release the 
results of analyses carried out through a privacy mechanism 
to prevent the information in these analyses from implicitly 
compromising privacy. In cases such as these, where com-
putational safeguards are not the primary focus, important 
questions of data utility versus privacy still arise, but these 
questions are not something our results directly address.

What our results do show is that one cannot rely on ano-
nymization to ensure individual privacy in social network 
data, in the presence of parties who may be trying to com-
promise this privacy. And while one natural reaction to these 
results is to try inventing methods of thwarting the partic-
ular attacks we describe, we think this misses the broader 
point of our work: true safeguarding of privacy requires 
mathematical rigor, beginning with a clear description of 
what it means to compromise privacy, what are the compu-
tational and behavioral capabilities of the adversary, and to 
what information might it have access, now or in the future.

There is a growing literature to which we can turn for 
thinking about ensuring privacy in settings such as these. 
There has been extensive recent work on privacy-preserving 
data mining, beginning with Agrawal et al., Samarati, and 
Sweeney 1, 2, 23, 24 which rekindled interest in a field quiescent 
since the 1980s, and increasingly incorporating approaches 
from modern cryptography for describing and reasoning 
about information leakage.4, 7, 10, 18 The notion of e-differential 
privacy gives very strong guarantees, independent of the aux-
iliary information and computational powers of the adversary 
(see Dwork et al.8, 9, 10). This notion departs from previous ones 
by shifting away from comparing what can be learned about 
an individual with versus without the database, instead con-
centrating on how the database behaves with versus without 
the data of an individual.

A simple and general interactive mechanism for ensuring 
differential privacy is given in Dwork et al.10 In this mecha-
nism, a question is posed, the exact answer is computed by 
the curator, and then a noisy version of the true answer is 
returned to the user. The advantage of interaction lies in the 
fact that accuracy must deteriorate with the number and com-
plexity of questions asked (see Dinur and Nissim,7 et sequelae). 
In a noninteractive solution, the curator must produce an 
object that answers all potential future questions; interactive 
approaches answer only those questions actually asked.

A lively literature (see, e.g., Hardt and Rothblum14 and the 
references therein) explores the tradeoffs between accuracy, 
computation, and degree of differential privacy in answer-
ing very large numbers of counting queries, that is, questions 
of the form “How many people in the database satisfy prop-
erty P?” In the context of a social network in which the goal 
is to protect the privacy of individual friendships, this cap-
tures questions of the form “How many edges (friendships) 
connect people with property P to people with property Q?” 
such as, “How many friendships are there between people 
who went to Princeton High School and Cornell graduates?”

The only privacy definition of which we are aware that 

protects against arbitrary auxiliary information is differen-
tial privacy. Further progress on differentially private analysis 
of social networks awaits compelling and precise analytical 
goals.
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