
DeceMBer 2011 | voL. 54 | No. 12 | CommunICatIonS of tHe aCm 133

doI:10.1145/2043174.2043199

Wherefore Art Thou R3579X?
Anonymized Social Networks,
Hidden Patterns, and
Structural Steganography
By Lars Backstrom, Cynthia Dwork, and Jon Kleinberg

abstract
In a social network, nodes correspond to people or other
social entities, and edges correspond to social links between
them. In an effort to preserve privacy, the practice of anony-
mization replaces names with meaningless unique identi-
fiers. We describe a family of attacks such that even from
a single anonymized copy of a social network, it is possible
for an adversary to learn whether edges exist or not between
specific targeted pairs of nodes.

1. IntRoduCtIon

1.1. anonymized social networks
Digital traces of human social interactions can now be found
in a wide variety of online settings, and this has made them
rich sources of data for large-scale studies of social networks.
While a number of these online data sources are based on
publicly crawlable blogging and social networking sites,
where users have explicitly chosen to publish their links to
others, many of the most promising opportunities for the
study of social networks are emerging from data on domains
where users have strong expectations of privacy—these
include email, phone, and messaging networks, as well as
the link structure of closed (i.e., “members-only”) online
communities. As a useful working example, consider a “com-
munication graph,” in which nodes are email addresses, and
there is a directed edge (u, v) if u has sent at least a certain
number of email messages or instant messages to v, or if v
is included in u’s address book. Here, we will be considering
the “purest” form of social network data, in which there are
simply nodes corresponding to individuals and edges indi-
cating social interaction, without any further annotation
such as timestamps or textual data.

In designing studies of such systems, one needs to set
up the data to protect the privacy of individual users while
preserving the global network properties. This is typically
done through anonymization, a simple procedure in which
each individual’s “name”—for example, email address,
phone number, or actual name—is replaced by a random
user ID, but the connections between the (now anonymized)
 people—encoding who spoke together on the phone,
who corresponded with whom, or who instant-messaged
whom—are revealed. The motivation behind anonymizing

is roughly as follows: while the social network labeled with
actual names is sensitive and cannot be released, there
may be considerable value in allowing researchers to study
its structure. For such studies, researchers are not specifi-
cally interested in “who” corresponds to each node, but in
the properties of the graph, such as its connectivity, node-
to-node distances, frequencies of small subgraphs, or the
extent to which it can be clustered. Anonymization is thus
intended to exactly p reserve the pure unannotated structure
of the graph while suppressing the “who” information.

Can this work? The hope is that being handed an ano-
nymized picture of a social network—just a graph with a
 random identifier attached to each node—is roughly akin
to being given the complete social network of Mars, with
the true Martian names attached to the nodes. Intuitively,
the names are meaningless to earth-dwellers: we do not
“know” the Martians, and it is completely irrelevant to us
whether a given node in the graph is labeled “Groark” or
“Zoark.” The difficulty with this metaphor, of course, is
that anonymous social network data almost never exists in
the absence of outside context, and an adversary can poten-
tially combine this knowledge with the observed structure
to begin compromising privacy, de-anonymizing nodes, and
even learning the edge relations between explicitly named
(de-anonymized) individuals in the system. Moreover, such
an adversary may in fact be a user (or set of users) of the sys-
tem that is being anonymized.

For distinguishing among ways in which an adversary
might take advantage of context, it is useful to consider
an analogy to the distinction between passive attacks and
active attacks in cryptanalysis—that is, between attacks
in which an adversary simply observes data as it is pre-
sented, and those in which the adversary actively tries to
affect the data to make it easier to decipher. In the case of
anonymized social networks, passive attacks are carried
out by individuals who try to learn the identities of nodes
only after the anonymized network has been released.

A previous version of this paper was published in
the Proceedings of the 16th International Conference on
World Wide Web: WWW2007 (Banff, Alberta, Canada,
May 8–12, 2007).

134 CommunICatIonS of tHe aCm | DeceMBer 2011 | voL. 54 | No. 12

research highlights

In contrast, an adversary in an active attack tries to com-
promise privacy by strategically creating new user accounts
and links before the anonymized network is released so
that these new nodes and edges will then be present in the
anonymized network.

1.2. the present work: attacks on anonymized
social networks
In this paper, we present both active and passive attacks on
anonymized social networks, showing that both types of
attacks can be used to reveal the true identities of targeted
users, even from just a single anonymized copy of the
 network, and with a surprisingly small investment of effort
by the attacker.

We describe active attacks in which an adversary chooses
an arbitrary set of users whose privacy it wishes to violate,
creates a small number of new user accounts with edges to
these targeted users, and creates a pattern of links among
the new accounts with the goal of making it stand out in the
anonymized graph structure. The adversary then efficiently
finds these new accounts together with the targeted users
in the anonymized network that is released. At a theoretical
level, the creation of nodes by the attacker in an
n-node network can begin compromising the privacy of arbi-
trary targeted nodes, with high probability for any network;
in experiments, we find that on a 4.4-million-node social
network, the creation of 7 nodes by an attacker (with degrees
comparable to those of typical nodes in the network) can
compromise the privacy of roughly 2400 edge relations on
average. Moreover, experimental evidence suggests that it
may be very difficult to determine whether a social network
has been compromised by such an active attack.

We also consider passive attacks, in which users of the
system do not create any new nodes or edges—they simply
try to find themselves in the released network and from this
to discover the existence of edges among users to whom
they are linked. In the same 4.4-million-node social network
dataset, we find that for the vast majority of users, it is possi-
ble for them to exchange structural information with a small
coalition of their friends and subsequently uniquely iden-
tify the subgraph on this coalition in the ambient network.
Using this, the coalition can then compromise the privacy of
edges among pairs of neighboring nodes.

There are some obvious trade-offs between the active and
passive attacks. The active attacks have more potent effects,
in that they are guaranteed to work with high probability in
any network (they do not force users to rely on the chance
that they can uniquely find themselves after the network is
released), and the attacker can choose any users it wants to
target. On the other hand, while the passive attack can only
compromise the privacy of users linked to the attacker, it
has the striking feature that this attacker can simply be a
user of the system who indulges his or her curiosity; there
is no observable “wrongdoing” to be detected. Moreover,
since we find in practice that the passive attack will succeed
for the majority of the population, it says in effect that most
people in a large social network have laid the groundwork
for a privacy-breaching attack simply through their every-
day actions, without even realizing it.

These trade-offs naturally suggest the design of hybrid
“semi-passive” attacks, in which a user of the system creates
no new accounts but simply creates a few additional out-
links to targeted users before the anonymized network is
released. As we show later, this can lead to privacy breaches
on a scale approaching that of the active attack, without
requiring the creation of new nodes.

In the next section, we provide some background and con-
text for our work in terms of the broader area of data privacy.
We then present our two main classes of active attacks on
anonymized social networks; we refer to them as walk-based
attacks and cut-based attacks, with the names reflecting the
underlying techniques being used. We then describe the use
of passive attacks and conclude with a general discussion.

2. ReLated WoRK
This work fits within a growing literature that has considered
ways in which private online data can be divulged against
users’ wishes, via carefully devised privacy-breaching attacks.
Such attacks have been based on a variety of features in the
data; for example, the queries entered by users into search
engines can be used to uniquely identify them,17 and the
writing styles of users in online discussion can likewise be
used to find the same person writing under different pseud-
onyms.22 Temporal data can also be an effective feature in
privacy-breaching attacks: since it is unlikely for two users to
perform a nontrivial set of actions at almost exactly the same
sets of times, the sequence of times at which a user performs
these actions becomes a type of identifying signature.20

We note that in our case, both the passive and active
attackers do not have access to highly resolved data like
timestamps or other textual or numerical attributes; they
can only use the binary information about who links to
whom, without other node attributes, and this makes their
task more challenging. Indeed, the secret subgraph H con-
structed as part of our attacks can be thought of as a kind
of structural steganography, hiding secret messages for later
recovery using just the social structure of G.

In this way, our approach can be seen as a step toward
understanding how fundamental techniques of data privacy
(see, e.g., Dwork9 and the references therein) can inform
how we think about the protection of even the most skele-
tal social network data. We discuss this further in the final
section.

In the time since the conference proceedings version
of our work appeared, there has been continued research
exploring mechanisms by which private data can be
revealed online. Concurrent with our work, Hay et al.15
considered a set of methods for identifying nodes in ano-
nymized social networks by looking at successively larger
neighborhoods of a node. More recently, Narayanan and
Shmatikov21 have shown how access to multiple networks
containing overlapping sets of people can enable approaches
to de-anonymization based on approximately aligning the
portions of the networks that overlap.

In a related but different direction, several lines of recent
work have shown how the principle of homophily—that
neighbors in social networks have similar characteristics—
can be used to discover private information: even if a user

DeceMBer 2011 | voL. 54 | No. 12 | CommunICatIonS of tHe aCm 135

keeps profile information private, it can often be estimated
from attributes in public profiles maintained by his or her
friends.16, 19, 25 Finally, recent work shows how social links
themselves can be discovered from information about the
times and places at which individuals perform activities;
using data from a photo-sharing site, Crandall et al.6 showed
that if two users uploaded photos from approximately the
same location at approximately the same time on multiple
occasions, there was a sharply increased probability that
they were linked on the site’s social network.

3. tHe WaLK-BaSed attaCK
To set the stage for our first active attack, we begin with
some definitions and notation. We assume the social net-
work is an n-node graph G = (V, E), representing interactions
in an online system. Nodes correspond to user accounts
and an edge (u, v) indicates that u has communicated with
v (again, consider the example of an email or instant mes-
saging network). The attacks become easier to carry out if
the released graph data is directed; for most of the paper, we
will therefore consider the harder case of undirected graphs,
in which we assume that the curator of the data—the agent
that releases the anonymized network—eliminates the
directions on the edges.

3.1. description of the attack
Let us consider the problem from the perspective of the
attacker. For ease of presentation, we begin with a slightly
simplified version of the attack and then show how to extend
it to the attack we really use. Recall that as an attacker, our
basic approach is to create a set of new user accounts with
links among them that will “stand out” when the ano-
nymized graph is released. Thus, we first choose a set of
k = Q (log n) named users, W = {w1, . . ., wk}, that we wish to
target in the network—we want to learn all the pairs (wi, wj)
for which there are edges in G. We create a set of k new user
accounts, X = {x1, . . ., xk}, which will appear as nodes in the
system. We include each undirected edge (xi, xj) indepen-
dently with probability 1/2. This produces a random graph
H on X.

We also create an edge (xi, wi) for each i. (In terms of
the underlying social network, this involves having xi send
wi a message, or include wi in an address book, or some
other activity depending on the nature of the network.) For
describing the basic version of the attack, we also assume
that, because the account xi corresponds to a fake identity, it
will not receive messages from any node in G – H other than
potentially wi, and thus will have no link to any other node in
G – H. We will see later that the attack can be made to work
even when this latter assumption does not hold.

When the anonymized graph G is released, we need to find
our copy of H, and to correctly label its nodes as x1, . . ., xk.
Having found these nodes, we then find wi as the unique
node in G – H that is linked to xi. We thus identify the full
labeled set W in G, and we can simply read off the edges
between its elements by consulting G.

It is worth noting that this type of attack only involves
the use of completely innocuous operations in the context
of the system being compromised—the creation of new

accounts and the creation of links to existing accounts. In
this sense, while the active attacker’s aims are nefarious
(and, in almost any imaginable scenario, prohibited either
by research ethics guidelines or the terms of service of the
system, or both), none of the individual steps from which
the attack is constructed could be viewed at a syntactic
level as “breaking into” parts of the system where it is not
allowed.

A number of technical ingredients are needed in order to
make this attack work based on whether certain subgraphs
have the same structure as each other and whether they have
any internal symmetries. To express such questions, we use
the following terminology. For a set of nodes S, we let G[S]
denote the subgraph of G induced by the nodes in S. An iso-
morphism between two sets of nodes S and S¢ in G is a one-to-
one correspondence f: S ® S¢ that maps edges to edges and
non-edges to non-edges: (u, v) is an edge of G[S] if and only
if (f (u), f (v)) is an edge of G[S¢]. In this case, G[S] and G[S¢]
are isomorphic—they are the same graph up to relabeling.
An automorphism is an isomorphism from a set S to itself—
a relabeling of the nodes f: S ® S that preserves graph’s
structure. An automorphism f is nontrivial if it is not the
identity function.

Thus, the construction of H succeeds if

 (i) There is no S ¹ X such that G[S] and G[X] = H are
isomorphic.

 (ii) The subgraph H can be efficiently found, given G.
(iii) The subgraph H has no nontrivial automorphisms

If (i) holds, then any copy of H we find in G must in fact be
the one we constructed; if (ii) holds, then we can in fact find
the copy of H quickly; and if (iii) holds, then once we find H,
we can correctly label its nodes as x1, . . ., xk, and hence find
w1, . . ., wk.

The full construction is almost as described above, with
the following three additions. First, the size of the targeted
set W can be larger than k. The idea is that rather than con-
necting each wi with just a single xi, we can connect it to a
subset Ni ⊆ X, as long as wi is the only node in G – H that is
attached to precisely the nodes in Ni—this way wi will still be
uniquely identifiable once H is found. Second, we will explic-
itly randomize the number of links from each xi to G – H, to
help in finding H. And third, to recover H, it is helpful to
be able to traverse its nodes in order x1, x2, . . ., xk. Thus, we
deterministically include all edges of the form (xi, xi + 1) and
 randomly construct all other edges.
The Construction of H. With this informal discussion in
mind, we now give the full specification of the attack.

(1) We choose k = (2 + d ) log2 n, for a small constant d
> 0, to be the size of X. We choose two constants
d0 ≤ d1 = O(log n), and for each i = 1, 2, . . ., k, we
choose an external degree Di ∈ [d0, d1] specifying
the number of edges xi will have to nodes in G – H.
Each Di can be chosen arbitrarily, but in our experi-
ments with the algorithm, it works well simply to
choose each Di independently and uniformly at
 random from the interval [d0, d1].

(2) Let W = {w1, w2, . . ., wb} be the users we wish to target,

136 CommunICatIonS of tHe aCm | DeceMBer 2011 | voL. 54 | No. 12

research highlights

for a value b = O(log2 n). We also choose a small integer
constant c (c = 3 will suffice in what follows). For each
targeted node wj, we choose a set Nj ⊆ {x1, . . ., xk} such
that all Nj are distinct, each Nj has size at most c, and
each xi appears in at most Di of the sets Nj. (This gives
the true constraint on how large b = O(log2 n) can be.)
We construct links to wj from each xi ∈ Nj.

(3) Before generating the random internal edges of H, we
add arbitrary further edges from H to G – H so that each
node xi has exactly Di edges to G – H. We construct
these edges subject only to the following condition:
for each j = 1, 2, . . ., b, there should be no node in G – H
other than wj that is connected to precisely the nodes
in Nj.

(4) Finally, we generate the edges inside H. We include
each edge (xi, xi+1), for i = 1, . . ., k − 1, and we include
each other edge (xi, xj) independently with probability
1/2. Let be the degree of xi in the full graph G (this is
Di plus its number of edges to other nodes in X).

This concludes the construction. As a first fact, we note
that standard results in random graph theory (see, e.g.,
Bollobás5) imply that with high probability, the graph H
has no nontrivial automorphisms. We will assume hence-
forth that this event occurs, that is, that H has no nontrivial
automorphisms.

We also note that the attack will work even if multiple
copies of the construction are carried out simultaneously.
That is, we can choose different sets of nodes to attack, W1,
W2, . . ., Wt, each of size Q (log n); for each Wi, we add a distinct
set of new nodes Xi to the graph G, building a graph Hi on
each Xi with the different random constructions performed
independently.
efficiently recovering H Given G. When the graph G is
released, we want to identify H: that is, we want to find the
subset of nodes of G that correspond to the set of nodes
x1, x2, . . ., xk of H. Since we have constructed H to contain a
path through the nodes x1, x2, . . ., xk, we will search along
k-node paths in G, looking for a k-node path P for which
the edges induced among the nodes of P have precisely the
structure of H.

At a high level (ignoring issues of efficiency, which we dis-
cuss next), our algorithm works simply as follows. For every
k-node path P = {y1, y2, . . ., yk} in G, we visit the nodes of P in
order, declaring P to have failed in the comparison to H as soon
as we reach a node yi that fails one of the following two tests.

 (i) a degree test: The degree of node yi should be equal to
the value , which we know to be the degree of node
xi in G.

(ii) an internal structure test: For each j < i, there should be
an edge (yj, yi) in G if and only if (xj, xi) is an edge of H.

Finally, if we reach the end of the path P without any of its
nodes having failed either of these tests, then by definition
we have found a copy of H in G. (As we note later, the degree
test is not necessary either for the correctness of the algo-
rithm or the bound on the worst-case running time, but it is
extremely useful in practice.)

There will typically be an extremely large number of
 distinct k-node paths in G, so we need to organize the
computation carefully in order for the search algorithm to
run efficiently. We do this as follows:

• First, we loop over all nodes v of G, trying each as the
candidate starting point y1 for the path P (the node that
will correspond to x1 in H). If the degree of v is not equal
to , then we skip v in this process, since it cannot cor-
respond to the node x1 in H.

• For each node v of degree , in G, we will organize all
paths originating at y1 = v into a search tree τv in the natu-
ral way: each node a in τv, at depth l, will correspond to
an l-node path in G, starting at y1 = v, that has not yet failed
any of the degree or internal structure tests.

• We grow τv one level at a time. For each node a of τv,
at depth l, corresponding to an l-node path P = {v = y1,
y2, . . ., yl} in G, we first check whether yl passes the degree
and internal structure tests. If it does not, we declare a
to be a leaf of τv. If it does pass, then we create a new
child a ¢ of a in τv for each way of extending P by adjoin-
ing a neighbor of yl that does not already appear on P.

If τv ever acquires a node at depth k, then this corresponds to
a k-node path in G that has passed all of our tests, and hence is
a copy of H. Conversely, if there is such a path P originating at
v, then our tree-growing procedure will continue adding nodes
to τv until it produces a node at depth k corresponding to P.

Note that the total running time of this algorithm is only
a small factor larger than the total number of nodes in all
search trees τv (summed over all nodes v in G), and so a key
issue in the analysis is to show that with high probability, the
total number of nodes in all τv is not too large.

3.2. analysis
To prove the correctness and efficiency of the attack, we
show two things: with high probability, the construction
produces a unique copy of H in G, and with high probability,
the total number of nodes in all search trees τv in the recovery
algorithm does not grow too large.

The formal statements of these two claims are as follows.

• Uniqueness. Let k ≥ (2 + d )log2 n for an arbitrary positive
constant d > 0, and suppose we use the following process to
construct an n-node graph G:

 (i) We start with an arbitrary graph G¢ on n – k nodes, and
we attach new nodes X = {x1, . . ., xk} arbitrarily to
nodes in G¢.

 (ii) We build a random subgraph H on X by including each
edge (xi, xi+1) for i = 1, . . ., k − 1, and including each
other edge (xi, xj) independently with probability 1/2.

Then with high probability, there is no subset of nodes
S π X in G such that G[S] is isomorphic to H = G[X].

• efficiency. For every e > 0, with high probability, the total
number of nodes appearing in all the search trees τv (over
all v in G) is O(n1+e).

DeceMBer 2011 | voL. 54 | No. 12 | CommunICatIonS of tHe aCm 137

While the proofs of these claims are somewhat involved,
the basic idea underlying them is rooted in an argument for-
mulated by Paul Erdös to prove a result in Ramsey Theory.5, 11
In the simplest form of the argument, let us suppose we have
an n-node graph G and a random k-node graph H on nodes
{xi, x2, . . ., xk}, with each edge (xi, xj) present independently
with probability 1/2. What is the probability that G contains
a k-node subgraph that is isomorphic to H? For any k-tuple
of nodes v1, v2, . . ., vk in G, the probability that the subgraph
of G on this k-tuple is isomorphic to H, under the mapping
sending vi to xi, is precisely , since the presence or
absence of the random edge (xi, xj) has to match the presence
or absence of (vi, vj) for each (i, j) pair. But there are fewer
than nk such k-tuples of nodes in G, and so the probability
that any of them yields such an isomorphism is less than
nk 2−k(k−1)/2. Now a direct calculation shows that once k exceeds
2 1og2 n, this probability shrinks rapidly to 0, and hence it is
likely that there is no isomorphic copy of H in G.

This gives the central idea of the proofs, but the details
become more complicated because the graph H in the
active attack is necessarily being attached by edges to the
graph G—and this creates the possibility of isomorphisms
that create a second copy of H out of parts of the original
H together with parts of the rest of G. Showing that this is
unlikely to happen requires a more intricate argument.

It is important to stress, however, that the intricacy of
the proofs is an aspect of the analysis, not of the algorithms
themselves. The construction of H and the recovery algo-
rithm have already been fully specified in the previous sub-
section, and they are quite simple to implement.

We conclude with some comments on the tests used in
the recovery algorithm. Recall that as we build τv, we elimi-
nate paths based on an internal structure check (do the edges
among path nodes match those in H?) and a degree check
(do the nodes on the path have the same degree sequence
as H?). The proofs of our two main claims require just the
internal structure check to prove uniqueness and to bound
the size of τv, respectively, but it is important in practice
that the algorithm use both checks: as the experiments in
the next subsection will show, one can get unique subgraphs
at smaller values of k, and with much smaller search trees
τv, by including the degree tests. But it is interesting to note
that since these theorems can be proved using only inter-
nal structure tests, the attack is robust at a theoretical level
provided only that the attacker has control over the internal
structure of X, even in scenarios where nodes elsewhere in
the graph may link to nodes in X without the knowledge of
the attacker. (In this case, we still require that the targeted
nodes wj Î W are uniquely identifiable via the sets Nj and that
all degrees in X remain logarithmic.)

3.3. Computational experiments
social Network data. We now describe computational
experiments with the algorithm on real social network
data drawn from an online setting. We find that the algo-
rithm scales easily to several million nodes and produces
efficiently findable unique subgraphs for values of k sig-
nificantly smaller than the upper bounds in the previous
subsections.

As data, we use the network of friendship links on the
blogging site LiveJournal, constructed from a crawl of this
site performed in February 2006. Each node in LiveJournal
corresponds to a user who has made his or her blog public
through the site; each user can also declare friendship links
to other users. These links provide the edges of the social
network we construct; they are directed, but we follow the
principle of the previous subsections and convert them to
undirected edges for purposes of the experiments. The
LiveJournal data thus works well as a testbed; it has 4.4 mil-
lion nodes and 77 million edges in the giant component of
its undirected social network, and it exhibits many of the
global structural features of other large online social net-
works. Finally, we emphasize that while LiveJournal has the
right structure for our tests, it is not in reality an anonymous
network—all the nodes in the network represent users who
have chosen to publish their information on the Web.

We simulate anonymization by removing all the user
names from the nodes; we then run our attack and investi-
gate the ranges of parameters in which it successfully iden-
tifies targeted nodes. As a first question, we examine how
often H can be found uniquely for specific choices of d0, d1,
and k. In our construction, we generate a random external
degree Di for each node xi uniformly from [d0, d1]. We then
create links to targeted nodes sequentially. Specifically,
in iteration i we choose a new user wi in G – H to target; we
then pick a minimal subset X¢ ⊆ X that has not been used
for any wj for j < i, and where the degrees of nodes in X¢ are
less than their randomly selected target degrees. We add
an edge between wi and each user in X¢. We repeat this
process until no such X¢ can be found. If, at the end of the
process, some nodes in X have not yet reached their target
degrees, we add edges to random nodes in G (and remove
nodes from W so that no two nodes are connected to the
same subset of X).
Uniqueness. We say the construction succeeds if H can be
recovered uniquely. Figure 1 shows the success frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2 4 6 8 10 12

P
ro

ba
bi

lit
y

k

Probability of successful attack

d0 = 20, d1 = 60
d0 = 10, d1 = 20

figure 1. for two different choices of d0 and d1, the value k = 7 gives
the attack on the Live Journal graph a high probability of success.
Both of these choices for d0 and d1 fall well within the degrees
typically found in G.

138 CommunICatIonS of tHe aCm | DeceMBer 2011 | voL. 54 | No. 12

research highlights

for two different choices of d0 and d1 (the intervals [10, 20]
and [20, 60]), and varying values of k. We see that the success
frequency is not significantly different for our two choices.
In both cases the number of nodes we need to add to achieve
a high success rate is very small—only 7. With 7 nodes, we
can attack an average of 34 and 70 nodes for the smaller and
larger degree choices, respectively.

We also note that the degree tests are essential for pro-
ducing unique identifiability of H at such a small value of k.
In fact, each of the 734 possible Hamiltonian graphs on
7 nodes actually occurs in the LiveJournal social network, so
it is only because of its degree sequence in G that our con-
structed subgraph H is unique. (Our Uniqueness result does
guarantee that a large enough H will be unique purely based
on its internal structure; this is compatible with our findings
since the analyzed bound of (2 + d) log2 n is larger than the
value k = 7 with which we are succeeding in the experiments.)
efficient recovery. In addition to being able to find H reli-
ably, we must be able to find H quickly. We argued above
that the total number of nodes in all search trees τv would
be sufficiently small that our search algorithm would be
near-linear. In our experiments on the LiveJournal friend-
ship graph, we find that, in practice, the total number of
nodes in all τv is not much larger than the number of nodes
v whose degree in G is equal to . (Recall that we only build
search trees for those v that have this degree.) For instance,
when d0 = 10 and d1 = 20, there are an average of 70,000 nodes
that have degree , while the total number of nodes in all
search trees τv is typically about 90,000.
detectability. Our simple attack shows that simple anony-
mization does not preserve privacy of links. One might won-
der about the detectability of the attack: can the curator of
the data, who is releasing the anonymized version, not be
able to discover and remove H? The curator does not have
access to the secret degree sequence or the edges within
H and so cannot employ the same algorithm the attacker
uses to discover H. However, if H were to stand out signifi-
cantly in some other way, there might be an alternate means
for finding it.

This subtle issue is worthy of more rigorous treat-
ment; here, we provide the following indications that the
subgraph H may be hard to discover. First is the simple
fact that H has only 7 nodes, so it is difficult for any of its
graph-theoretic properties to stand out with much statisti-
cal significance. Second, we describe some particular ways
in which H does not stand out. To begin with, the internal
structure of H is consistent with what is present in the net-
work. For example, we have already mentioned that every
7-node Hamiltonian graph already occurs in LiveJournal,
so this means that there are already subgraphs that exactly
match the internal structure of H as an induced 7-node
subgraph. (We are still able to find H because of the pat-
tern of edges that connect nodes of H to nodes of G – H.)
More generally, almost all nodes in LiveJournal are part of
a very dense 7-node subgraph: If we look at all the nodes
with degree at least 7, and consider the subgraph formed
by those nodes and their 6 highest-degree neighbors, over
90% of such subgraphs have at least 11 > edges. These
subgraphs are also almost all comparably well connected

to the rest of G.

4. tHe Cut-BaSed attaCK
In the walk-based attack just presented, one needs to con-
struct a logarithmic number of nodes in order to begin com-
promising privacy. On the other hand, we can show that at
least nodes are needed in any active attack that
requires a subgraph H to be uniquely identifiable with high
probability, independent of both the structure of G – H and
the choice of which users to target.

It is therefore natural to try closing this gap between the
O(log n) number of nodes used by the first attack and the

 lower bound required in any attack. With this in
mind, we now describe our second active attack, the cut-
based attack; it matches the lower bound by compromising
privacy using a subgraph H constructed on only
nodes. While the bound for the cut-based attack is appeal-
ing from a theoretical perspective, there are several impor-
tant respects in which the walk-based attack that we saw
earlier is likely to be more effective in practice. First, the
walk-based attack comes with a much more efficient recov-
ery algorithm; and second, the walk-based attack appears
to be harder for the curator of the data to detect (as the cut-
based attack produces a densely connected component
attached weakly to the rest of the graph, which is uncom-
mon in many settings).
The Construction of H. We begin the description of
the cut-based attack with the construction of the sub-
graph H.

(1) Let b, the number of users we wish to target, be
, and let w1, w2, . . ., wb be these users. First, for

k = 3b + 3, we construct a set X of k new user accounts,
creating an (undirected) edge between each pair with
probability 1/2. This defines a subgraph H that will
be in G.

(2) Let d (H) denote the minimum degree in H, and let
γ (H) denote the value of the minimum cut in H (i.e.,
the minimum number of edges whose deletion dis-
connects H). It is known that for a random graph H
such as we have constructed, the following properties
hold with probability going to 1 exponentially quickly
in k: first, that γ (H) = d (H); second, that d (H) ≥ (1/2 − e)
k for any constant e > 0; and third, that H has no non-
trivial automorphisms.5 In what follows, we will
assume that all these properties hold: γ  (H) = d (H) ≥
k/3 > b, and H has no nontrivial automorphisms.

(3) We choose b nodes x1, . . ., xb in H arbitrarily. We
 create a link from xi to wi so that the edge (xi, wi) will
appear in the anonymized graph G. Thus, b of the
nodes of H each have a single edge to a node of G – H,
while the other k − b nodes of H have no edges to
nodes of G – H.

A crucial property of H that we will use is the following:
there are b edges in total that have one end in H and the
other end in G – H; on the other hand, each node in H has
more than b edges to other nodes of H.

Finally, we note that as with the walk-based attack in the

DeceMBer 2011 | voL. 54 | No. 12 | CommunICatIonS of tHe aCm 139

previous section, we can also carry out multiple copies of
the present construction simultaneously, if desired, so as to
attack multiple sets of targeted users W1, W2, . . ., Wt.
efficiently recovering H Given G. Now, when G is released,
we identify the subgraph H and the targeted users w1, . . ., wb
using the following recovery algorithm.

(1) We first compute the Gomory–Hu tree of G—this is an
edge-weighted tree T on the node set V of G, such that
for any v, w ∈ V, the value of the minimum v − w cut in
G is equal to the minimum edge weight on the
v − w path in T.13

Computing T is the most expensive step of the
recovery algorithm, computationally. The best run-
ning time known for constructing a Gomory–Hu tree
in a graph with n nodes and m edges is O(mn) times
a factor that is polynomial in log (m + n).3 This is a
much larger worst-case bound than we have for the
walk-based attack. On the other hand, computational
experiments in Web graph analysis indicate that
Gomory–Hu tree computations can in fact be made
to scale to very large graphs in practice.12

(2) We delete all edges of weight at most b from T, produc-
ing a forest T ¢. To find the set of nodes X we con-
structed, we iterate through all components of T ¢ of
size exactly k—let them consist of node sets S1, S2, . . .,
Sr—and for each such Si we test whether G[Si] is isomor-
phic to H. These isomorphism tests can be done effi-
ciently, even by brute force, since k! = o(n). By adapting
our proof of Uniqueness from the walk-based attack,
we can show a form of uniqueness for H here too:

 • With high probability, there will be a single i such that
G[Si] is isomorphic to H, and that Si is equal to our set
X of new nodes.

(3) Since H has no non-trivial automorphisms, from
knowledge of Si we can identify the nodes x1, . . ., xb
that we linked to the targeted users w1, . . ., wb, respec-
tively. Hence we can identify the targeted users as
well, which was the goal.

some specific Numbers for the Cut-Based attack. It is use-
ful to supplement the asymptotic results for the cut-based
attack with some specific numbers. If the network G has
100 million nodes, then by creating 12 new user accounts
we can succeed in identifying 3 chosen users in the system
with probability at least 0.99. Creating 15 new user accounts
leads to a microscopically small failure probability.

The calculation is as follows. We first generate 100 ran-
dom 12-node graphs H1, . . ., H100, and see if any of them lacks
nontrivial automorphisms and has a minimum cut of size
at least 4. If any of them does, we choose one as our 12-node
subgraph H. Computational experiments show that a ran-
dom 12-node graph will have no nontrivial automorphism
and g  (H) ≥ 4 with probability roughly 0.25. Thus, with prob-
ability well over 0.999, one of the 100 graphs Hi will have this
pair of properties. Now, if we use the ith of these random
graphs in the construction, for a fixed i, then, applying the
notation from the description of the attack above, there are
at most 8333333 possible components Sj of size 12 in the

forest T ¢, one of which, say S*, is our subgraph H. The prob-
ability that there even exists an Sj ¹ S* that is isomorphic to H
is bounded by 8333333 · 12! < 2−66 < 6 · 10−5. Hence the proba-
bility that any Hi will lead to non-uniqueness when attached
to G is at most 0.006, and so in particular this holds for the Hi
that we choose as H.

By way of comparison, the provable bounds for the
walk-based attack require a number of new user accounts
that is at least 2 log2 n, which is approximately 53 when n is
100 million. On the other hand, as we have seen in our com-
putational experiments, the walk-based attack appears to
require fewer nodes in practice than the provable guaran-
tees suggest, suggesting that further empirical comparison
of these two attacks would be an interesting open question.

5. PaSSIVe attaCKS
In a passive attack, regular users are able to discover their
locations in G using their knowledge of the local structure
of the network around them. While there are a number
of different types of passive attacks that could be imple-
mented, here we imagine that a small coalition of passive
attackers collude to discover their location. By doing so,
they compromise the privacy of some of their neighbors:
those connected to a unique subset of the coalition, and
hence unambiguously recognizable once the coalition is
found.

Here, we imagine that a coalition X of size k is initiated
by one user who recruits k − 1 of his or her neighbors to join
the coalition. (Other structures could lead to analogous
attacks.) We assume that the users in the coalition know
the edges among themselves—the internal structure of H =
G[X], using the terminology from the active attacks. We
also assume that they know the names of their neighbors
outside X. This latter assumption is reasonable in many
cases: for example, if G is an undirected graph built from
messages sent and received, then each user in X knows its
incident edges.

The attack itself is analogous to the walk-based attack,
except that the structure of H arises organically from the
behavior of individuals using the system. A user x1 selects
k − 1 neighbors to form a coalition X = {x1, x2, . . ., xk}. The
coalition knows which edges (xi, xj) are in G and also the
neighbors of each xi in G – X. Once G is released, the coalition
runs the search algorithm from the walk-based attack, with
a minor modification due to the fact that H need not have a
Hamiltonian path but instead has a single node connected
to all others.

To help the passive attack succeed, we can incorpo-
rate a further optimization that was not explicitly used for
the walk-based active experiments. For each nonempty
set S ⊆ {1, 2, . . ., k}, let g (S) denote the number of nodes in
G that have edges to all the element of {xi: i Î S} and none
of the elements of {xi: i ∉ S}. (In some places, we will abuse
the notation for g (·) as follows: if U is a set of nodes in X
rather than a set of indices, we will use g (U) to denote the
number of nodes in G that have edges to all elements of U
and no elements of X − U.) Now, suppose we have a node a in a
search tree τv, corresponding to a path y1, y2, . . ., yl in G. For
each S ⊆ {1, 2, . . ., l}, it should be the case that exactly g (S)

140 CommunICatIonS of tHe aCm | DeceMBer 2011 | voL. 54 | No. 12

research highlights

nodes of G are connected to all members of {yi: i Î S} and
none of {yi: i ∉ S}; otherwise, {y1, . . ., yl} cannot be the first
l nodes of the copy of H in G.

Finally, once the coalition of users X finds itself, it can
determine the identity of any user w ∉ X whose neighbor set
S in X satisfies g(S) = 1. (In this case, w is uniquely identified
by the identities of its neighbors in X.)

Since the structure of H is not randomly generated,
there is no a priori reason to believe that it will be uniquely
findable or that the above algorithm will run efficiently.
Indeed, for pathological cases of G and H, the problem is
NP-Hard. However, we find on real social network data that
the instances are not pathological and that subgraphs on
small coalitions tend to be unique and efficiently findable.

The primary disadvantage of this attack in practice, as
compared to the active attack, is that it does not allow one to
compromise the privacy of arbitrary users. However, a natural
extension is a semi-passive attack whereby a coalition of existing
users colludes to attack specific users. To do this, the coalition
X forms as described above with x1 recruiting k − 1 neighbors.
Next, the coalition compares neighbor sets to find some set
S ⊆ X such that g (S) = 0. Then, to attack a specific user w, each
user in {xi: i Î S} adds an edge to w. Then, assuming that the
coalition can uniquely find H, they will certainly find w as well.
Computational experiments. Here, we consider the passive
attack on the undirected version of the LiveJournal graph.
For varying k, we consider a coalition of a user x1 and his or
her k − 1 highest-degree neighbors. (We also consider the
case where x1 selects k − 1 neighbors at random; the success
rate here is similar.) We analyze the attack described above
for a randomly chosen sample of users x1 whose degree is at
least k − 1.

We find that even coalitions as small as three or four users
can often find themselves uniquely, particularly when using
the refined version of the algorithm. Figure 2 summarizes the
success rates for different-sized coalitions based on both
the “simple” algorithm using the internal structure of H
and the degree sequence, as well as the “refined” algorithm
that incorporates the function g (S). With minimal prepro-
cessing, G can be searched for a particular coalition almost
immediately: On a standard desktop, it takes less than a
tenth of a second, on average, to find a coalition of size 6.

At first glance, these results seem at odds with the
results for the active attack in Figure 1, as the passive attack
is producing a higher chance of success with fewer nodes.
However, in the active attack, we limited the degrees of the
users created so that H would be inconspicuous. In the pas-
sive attack, there is no such limit, and many users’ highest-
degree neighbor has degree well over the limit of 60 that we
imposed on the active attack; this makes it easier to find
the resulting subgraph H. When we consider only those
coalitions whose members all have degrees analogous
to those in the active attack, the results are similar to the
active attack.

As Figure 3 shows, the passive attack identifies relatively
few nodes outside the coalition, compared to the active
attack. However, with a semi-passive attack, we can greatly
increase the number of users compromised, as indicated by
Figure 3 (and recall that these users can be chosen arbitrarily

by the coalition). Moreover, when the coalition is compro-
mising as many users as possible, the semi-passive attack
tends to have a higher success rate.

6. dISCuSSIon
It is natural to ask what conclusions about private analysis
of social network data should be drawn from this work. As
noted at the outset, our work is not directly relevant to all
settings in which social network data is used. For example,
much of the research into online social networks is con-
ducted on data collected from Web crawls, where users
have chosen to make their network links public. There
are also natural scenarios in which individuals work with

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8

P
ro

ba
bi

lit
y

Coalition size

Probability of successful attack

Simple algorithm, High-degree friends
Refined algorithm, High-deg friends
Refined algorithm, Random friends

figure 2. Probability of success for different coalition sizes in the
LiveJournal graph, comparing a simple algorithm using only the
degrees and internal structure of the coalition, and a more refined
algorithm using the edges connecting H to G–H.

0

5

10

15

20

25

30

35

40

45

50

2 3 4 5 6 7 8

N
um

be
r

co
m

pr
om

is
ed

Coalition size

Average number of users compromised

Passive
Semi-passive

figure 3. as the size of the coalition increases, the number of users
in the LiveJournal graph compromised under the passive attack
when the coalition successfully finds itself increases superlinearly.
the number of users the semi-passive attack compromises
increases exponentially.

december 2011 | vol. 54 | no. 12 | communications of the acm 141

social network data under safeguards that are primarily
legal or contractual, rather than computational, in nature—
although even in such cases, there are compelling reasons
why researchers covered by contractual relationships with a
curator of sensitive data should still only publicly release the
results of analyses carried out through a privacy mechanism
to prevent the information in these analyses from implicitly
compromising privacy. In cases such as these, where com-
putational safeguards are not the primary focus, important
questions of data utility versus privacy still arise, but these
questions are not something our results directly address.

What our results do show is that one cannot rely on ano-
nymization to ensure individual privacy in social network
data, in the presence of parties who may be trying to com-
promise this privacy. And while one natural reaction to these
results is to try inventing methods of thwarting the partic-
ular attacks we describe, we think this misses the broader
point of our work: true safeguarding of privacy requires
mathematical rigor, beginning with a clear description of
what it means to compromise privacy, what are the compu-
tational and behavioral capabilities of the adversary, and to
what information might it have access, now or in the future.

There is a growing literature to which we can turn for
thinking about ensuring privacy in settings such as these.
There has been extensive recent work on privacy-preserving
data mining, beginning with Agrawal et al., Samarati, and
Sweeney 1, 2, 23, 24 which rekindled interest in a field quiescent
since the 1980s, and increasingly incorporating approaches
from modern cryptography for describing and reasoning
about information leakage.4, 7, 10, 18 The notion of e-differential
privacy gives very strong guarantees, independent of the aux-
iliary information and computational powers of the adversary
(see Dwork et al.8, 9, 10). This notion departs from previous ones
by shifting away from comparing what can be learned about
an individual with versus without the database, instead con-
centrating on how the database behaves with versus without
the data of an individual.

A simple and general interactive mechanism for ensuring
differential privacy is given in Dwork et al.10 In this mecha-
nism, a question is posed, the exact answer is computed by
the curator, and then a noisy version of the true answer is
returned to the user. The advantage of interaction lies in the
fact that accuracy must deteriorate with the number and com-
plexity of questions asked (see Dinur and Nissim,7 et sequelae).
In a noninteractive solution, the curator must produce an
object that answers all potential future questions; interactive
approaches answer only those questions actually asked.

A lively literature (see, e.g., Hardt and Rothblum14 and the
references therein) explores the tradeoffs between accuracy,
computation, and degree of differential privacy in answer-
ing very large numbers of counting queries, that is, questions
of the form “How many people in the database satisfy prop-
erty P?” In the context of a social network in which the goal
is to protect the privacy of individual friendships, this cap-
tures questions of the form “How many edges (friendships)
connect people with property P to people with property Q?”
such as, “How many friendships are there between people
who went to Princeton High School and Cornell graduates?”

The only privacy definition of which we are aware that

protects against arbitrary auxiliary information is differen-
tial privacy. Further progress on differentially private analysis
of social networks awaits compelling and precise analytical
goals.

acknowledgments
This work has been supported in part by NSF grants CCF-
0325453, IIS-0329064, CNS-0403340, and BCS-0537606, by
the Institute for the Social Sciences at Cornell, and by the
John D. and Catherine T. MacArthur Foundation.

References

 1. Agrawal, D., Aggarwal, C. On the
design and quantification of privacy
preserving data mining algorithms.
In ACM Symposium on Principles of
Database System (2001).

 2. Agrawal, R., Srikant, R. Privacy-
preserving data mining. In Proceedings
of the ACM SIGMOD (2000).

 3. Bhalgat, A., Hariharan, R., Kavitha, T.,
Panigrahi, D. An Õ(mn) Gomory-
Hutree construction algorithm for
unweighted graphs. In Proceedings
of ACM Symposium on Theory of
Computing (2007).

 4. Blum, A., Dwork, C., McSherry, F.,
Nissim, K. Practical privacy: the SuLQ
framework. In ACM PODS (2005).

 5. Bollobás, B. Random Graphs.
Cambridge University Press,
Cambridge, U.K., 2001.

 6. Crandall, D., Backstrom, L., Cosley, D.,
Suri, S., Huttenlocher, D., Kleinberg, J.
Inferring social ties from geographic
coincidences. Proc. Natl. Acad. Sci.,
107 (2010).

 7. Dinur, I., Nissim, K. Revealing
information while preserving privacy.
In Symposium on Principles of
Database System (2003).

 8. Dwork, C. Differential privacy.
Proceedings of International
Colloquium on Automata, Languages
and Programming (2006).

 9. Dwork, C. A Firm Foundation for Private
Data Analysis. CACM 54, 1 (2011).

 10. Dwork, C., McSherry, F., Nissim, K.,
Smith, A. Calibrating noise to
sensitivity in private data analysis.
In Proceedings of Theory of
Cryptography Conference (2006).

 11. Erdös, P. Some remarks on the theory
of graphs. Bull. AMS 53 (1947).

 12. Flake, G., Tarjan, R., Tsioutsiouliklis, K.
Graph clustering and min cut trees.
Internet Math. 1 (2003).

 13. Gomory, R., Hu, T.C. Multi-terminal
network flows. J. Soc. Ind. Appl. Math.
9 (1961).

 14. Hardt, M., Rothblum, G. A
multiplicative weights mechanism for

privacy-preserving data analysis.
In Proceedings of FOGS (2010).

 15. Hay, M., Miklau, G., Jensen, D.,
Towsley, D., Weis, P. Resisting
structural re-identification in
anonymized social networks.
In Proceedings of the VLDB
Endowment, 1 (2008).

 16. Jernigan, C., Mistree, B. Gaydar:
Facebook friendships expose sexual
orientation. First Monday 14 (2009).

 17. Kumar, R., Novak, J., Pang, B.,
Tomkins, A. On anonymizing query
logs via token-based hashing. In
Proceedings of the 16th International
World Wide Web Conference (2007).

 18. Mishra, N., Sandier, M. Privacy via
pseudorandom sketches. In ACM
Symposium on Principles of Database
System (2006).

 19. Mislove, A., Viswanath, B., Gummadi,
P.K., Druschel, P. You are who you know:
inferring user profiles in online social
networks. In ACM WSDM (2010).

 20. Narayanan, A., Shmatikov, V. Robust
de-anonymization of large sparse
datasets (How to break anonymity
of the Netflix prize dataset). In
Proceedings of the IEEE Symposium
on Security and Privacy (2008).

 21. Narayanan, A., Shmatikov, V.
De-anonymizing social networks. In
Proceedings of the IEEE Symposium
on Security and Privacy (2009).

 22. Novak, J., Raghavan, P., Tomkins, A.
Anti-aliasing on the web. Proceedings
of the 13th International World Wide
Web Conference (2004).

 23. Samarati, P. Protecting respondents’
identities in microdata release.
IEEE TKDE 13 (2001).

 24. Sweeney, L., k-anonymity: a model for
protecting privacy. Intl. J. Uncertainty
Fuzziness Knowledge-Based Systems
10 (2002).

 25. Zheleva, E., Getoor, L. The illusion
of privacy in social networks with
mixed public and private user profiles.
Proceedings of the 18th International
World Wide Web Conference (2009).

Lars Backstrom (lars@fb.com),
Facebook, Palo Alto, CA.

Cynthia Dwork (dwork@microsoft.com),
Microsoft Research, Silicon Valley
Campus, Mountain View, CA.

Jon Kleinberg (kleinber@cs.cornell.edu),
Cornell University, Ithaca, NY.

© 2011 ACM 0001-0782/11/12 $10.00

